首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13718篇
  免费   1882篇
  国内免费   992篇
化学   9010篇
晶体学   133篇
力学   1159篇
综合类   107篇
数学   778篇
物理学   5405篇
  2024年   15篇
  2023年   107篇
  2022年   262篇
  2021年   371篇
  2020年   492篇
  2019年   393篇
  2018年   403篇
  2017年   471篇
  2016年   601篇
  2015年   530篇
  2014年   602篇
  2013年   988篇
  2012年   928篇
  2011年   842篇
  2010年   684篇
  2009年   702篇
  2008年   751篇
  2007年   812篇
  2006年   786篇
  2005年   621篇
  2004年   580篇
  2003年   544篇
  2002年   427篇
  2001年   354篇
  2000年   334篇
  1999年   313篇
  1998年   280篇
  1997年   306篇
  1996年   248篇
  1995年   261篇
  1994年   223篇
  1993年   183篇
  1992年   176篇
  1991年   144篇
  1990年   152篇
  1989年   127篇
  1988年   118篇
  1987年   88篇
  1986年   63篇
  1985年   58篇
  1984年   54篇
  1983年   23篇
  1982年   33篇
  1981年   19篇
  1980年   25篇
  1979年   27篇
  1978年   16篇
  1976年   7篇
  1974年   8篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 35 毫秒
11.
大尺寸低缺陷碳化硅(SiC)单晶体是功率器件和射频(RF)器件的重要基础材料,物理气相传输(physical vapor transport, PVT)法是目前生长大尺寸SiC单晶体的主要方法。获得大尺寸高品质晶体的核心是通过调节组分、温度、压力实现气相组分在晶体生长界面均匀定向结晶,同时尽可能减小晶体的热应力。本文对电阻加热式8英寸(1英寸=2.54 cm)碳化硅大尺寸晶体生长系统展开热场设计研究。首先建立描述碳化硅原料受热分解热质输运及其多孔结构演变、系统热输运的物理和数学模型,进而使用数值模拟方法研究加热器位置、加热器功率和辐射孔径对温度分布的影响及其规律,并优化热场结构。数值模拟结果显示,通过优化散热孔形状、保温棉的结构等设计参数,电阻加热式大尺寸晶体生长系统在晶锭厚度变化、多孔介质原料消耗的情况下均能达到较低的晶体横向温度梯度和较高的纵向温度梯度。  相似文献   
12.
利用第一性原理对Li原子掺杂C28的分子器件的热自旋输运性质进行了计算。在不同的温度场下,上下自旋分别为Li原子掺杂C28的分子器件中的空穴和电子提供了输运通道,在MJ1和MJ3分子器件中,热自旋电流随着温度增加而增大,但在MJ2分子器件中,热自旋电流先增大再减小。三种分子器件都出现了自旋塞贝克效应,MJ2还出现了负微分电阻现象,利用费米-狄拉克分布和自旋输运谱对其物理机理进行了解释。根据Li掺杂C28的单分子器件的热自旋输运性质,可设计新的自旋纳米器件。  相似文献   
13.
Reducing gas contaminants by affordable and effective adsorbents is a major challenge in the 21st century. In the present study, thorium metal organic framework (Th‐MOF) nanostructures are introduced as highly efficient adsorbents. These compounds were manufactured via a novel route resulting from the development of microwave assisted reverse micelle (MARM) and ultrasound assisted reverse micelle (UARM) methods. The products were characterized utilizing XRD, SEM, TGA/DSC, BET, and FT‐IR analyses. Based on the results, the samples synthesized by MARM had uniform size distribution, high thermal stability, and significant surface area. Calculations using DFT/B3LYP indicated that the compounds have a tendency to the polymeric form, which could theoretically confirm the formation of Th‐MOF. Results of analysis of variance (ANOVA) showed that synthesis parameters played a critical role in the manufacturing of products with distinctive properties. Response surface methodology (RSM) predicted the possibility of creating Th‐MOF adsorbents with the surface area of 2579 m2/g, which was a considerable value in comparison with the properties of other adsorbents. Adsorption studies showed that, in the optimum conditions, the Th‐MOF products had high adsorption capacity for CO and CH4. It is believed that the synthesis protocol developed in the present study and the systematic studies conducted on the samples which lead to products with ideal adsorption properties.  相似文献   
14.
Metal–organic frameworks (MOFs) have shown great potential in gas separation and storage, and the design of MOFs for these purposes is an on-going field of research. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a valuable technique for characterizing these functional materials. It can provide a wide range of structural and motional insights that are complementary to and/or difficult to access with alternative methods. In this Concept article, the recent advances made in SSNMR investigations of small gas molecules (i.e., carbon dioxide, carbon monoxide, hydrogen gas and light hydrocarbons) adsorbed in MOFs are discussed. These studies demonstrate the breadth of information that can be obtained by SSNMR spectroscopy, such as the number and location of guest adsorption sites, host–guest binding strengths and guest mobility. The knowledge acquired from these experiments yields a powerful tool for progress in MOF development.  相似文献   
15.
The current response for the parameter change of a mesoscopic system is a practical issue for future's circuit design. Nowadays most considered cases are various types of bias modulation, while the effect of change of conductor Hamiltonian is seldom addressed. In this paper, we investigate the response of ballistic transport induced by a sudden change of the conductor Hamiltonian. We formulize the terminal current in language of non-equilibrium Green's function. Our method is applied to one-dimensional tight-binding chains and we find that the terminal current has a delay to the Hamiltonian change. The amount of delay is not determined by the velocity of incident electrons in the bias window, but depends on the tight-binding hopping energy γ. The delay of current response at the detecting point away from where the Hamiltonian changes is Cγ?1, where C is a constant independent of the system.  相似文献   
16.
Semiconductor metal oxides (SMO)-based gas-sensing materials suffer from insufficient detection of a specific target gas. Reliable selectivity, high sensitivity, and rapid response–recovery times under various working conditions are the main requirements for optimal gas sensors. Chemical warfare agents (CWA) such as sarin are fatal inhibitors of acetylcholinesterase in the nerve system. So, sensing materials with high sensitivity and selectivity toward CWA are urgently needed. Herein, micro-nano octahedral Co3O4 functionalized with hexafluoroisopropanol (HFIP) were deposited on a layer of reduced graphene oxide (rGO) as a double-layer sensing materials. The Co3O4 micro-nano octahedra were synthesized by direct growth from electrospun fiber templates calcined in ambient air. The double-layer rGO/Co3O4-HFIP sensing materials presented high selectivity toward DMMP (sarin agent simulant, dimethyl methyl phosphonate) versus rGO/Co3O4 and Co3O4 sensors after the exposure to various gases owing to hydrogen bonding between the DMMP molecules and Co3O4-HFIP. The rGO/Co3O4-HFIP sensors showed high stability with a response signal around 11.8 toward 0.5 ppm DMMP at 125 °C, and more than 75 % of the initial response was maintained under a saturated humid environment (85 % relative humidity). These results prove that these double-layer inorganic–organic composite sensing materials are excellent candidates to serve as optimal gas-sensing materials.  相似文献   
17.
Plant research interest has increased all over the world, and a large body of evidence has been collected to show the huge potential of medicinal plants in various disease treatments. Medicago sativa L., known as alfalfa, is a rich source of biologically active components and secondary metabolites and was frequently used from the ancient times both as fodder crop and as a traditional medicine in the treatment of various diseases. Cyclitols, naturally occurring in this plant, have a particular interest for us due to their significant anti‐diabetic, antioxidant, anti‐inflammatory, and anti‐cancer properties. In the present study we revealed the isolation, the identification, and the quantification of some cyclitols and sugars extracted from different morphological parts of alfalfa plant. Soxhlet extraction and solid phase extraction were used as extraction and purification methods, while for the analyses derivatization followed by gas chromatography with mass spectrometry was involved. The obtained results showed significant differences in the quantities of cyclitols and sugars found in the investigated morphological parts, ranging between 0.02 and 13.86 mg/g of plant in case of cyclitols, and in the range of 0.09 and 40.09 mg/g of plant for sugars. However, roots have the richest part of cyclitols and sugars in contrast to the leaves.  相似文献   
18.
气敏传感器具有气体识别、探测和监测等功能, 广泛应用于工业生产等领域, 但在泄漏预警时缺乏迅速识别和定位等功能. 本文基于传感器制备工艺偏差分析, 通过对传感器气敏机制的研究, 提出一种基于Ni-SnO2纳米颗粒的气敏传感器物理不可克隆函数(Gas Sensor-Physical Unclonable Function, GS-PUF)设计方案. 该方案利用掺杂Ni元素的方法, 结合静电喷雾沉积技术制备Ni-SnO2气敏传感器, 以获取更加稳定可靠的物理特征值, 然后采集气敏传感器对不同浓度下气体的响应数据, 最后利用随机阻值多位平衡算法比较不同组气敏传感器响应电信号值, 实现PUF数据输出. 制备每组样本可产生128位二进制数据的多组PUF样本, 进行对比实验. 结果表明, 所设计的GS-PUF具有气体泄漏源头识别定位的功能, 且随机性提升至99%, 唯一性达49.80%.  相似文献   
19.
In some circumstances, sound waves in a rarefied gas can be studied using a linearised form of the regularised 13-moment equations of Struchtrup and Torrilhon. We build solutions of those equations in spherical polar coordinates using vector spherical harmonics. We first solve a reduced system of equations (with 11 unknowns) after introduction of a force vector (divergence of the stress). We then show that the stresses themselves can be recovered by solving five additional equations. The results obtained are expected to be useful for problems such as acoustic scattering of a plane wave by a sphere in a rarefied gas.  相似文献   
20.
Ionic transport in nano- to sub-nano-scale pores is highly dependent on translocation barriers and potential wells. These features in the free-energy landscape are primarily the result of ion dehydration and electrostatic interactions. For pores in atomically thin membranes, such as graphene, other factors come into play. Ion dynamics both inside and outside the geometric volume of the pore can be critical in determining the transport properties of the channel due to several commensurate length scales, such as the effective membrane thickness, radii of the first and the second hydration layers, pore radius, and Debye length. In particular, for biomimetic pores, such as the graphene crown ether we examine here, there are regimes where transport is highly sensitive to the pore size due to the interplay of dehydration and interaction with pore charge. Picometer changes in the size, e.g., due to a minute strain, can lead to a large change in conductance. Outside of these regimes, the small pore size itself gives a large resistance, even when electrostatic factors and dehydration compensate each other to give a relatively flat—e.g., near barrierless—free energy landscape. The permeability, though, can still be large and ions will translocate rapidly after they arrive within the capture radius of the pore. This, in turn, leads to diffusion and drift effects dominating the conductance. The current thus plateaus and becomes effectively independent of pore-free energy characteristics. Measurement of this effect will give an estimate of the magnitude of kinetically limiting features, and experimentally constrain the local electromechanical conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号